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New Solutions of Peano’s Differential Equation

Milan R. Tasković

Abstract. This paper gives sufficient conditions for new solutions of
Peano’s differential equation in the class of all lower continuous map-
pings. In this sense, this paper presents new fixed point theorems of
Schauder type on lower transversal spaces. For the lower transversal
space (X, ρ) are essential the mappings T : X → X which are un-
bounded variation, i.e., if

∞X
n=0

ρ
�
T nx, T n+1x

�
= +∞

for arbitrary x ∈ X. On the other hand, for upper transversal spaces
are essential the mappings T : X → X which are bounded variation!

1. Introduction and history

Main fact of this paper is an investigation of solvability of the following
initial value problem of the form

x′(t) = f(t, x(t)), x(t0) = y0,(De)

where f is merely continuous or lower transversal continuous. In this sense
I begin with the following essential facts on the transversal spaces and their
further application for the solution of differential equation (De).

The possibility of defining such notions as limit and continuity in an
arbitrary set is an idea which undoubtedly was first put forward by M.
Fréchet in 1904, and developed by him in his famous thesis in 1906.

The simplest and most fruitful method which be proposed for such defi-
nitions was the introduction of the notion of distance.

But the greatest merit of Fréchet lies in the emphasis he put on three
notions which were to play a fundamental part in all later developments of
Functional Analysis: compactness, completeness, and separability.

In this sense, the notion of order, and the notion of new completeness,
have each led to a fixed point statement. We now obtain geometric results
of fixed points based on an interpley of these two notions as new notations
in transversal upper and lower spaces.
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126 New Solutions of Peano’s Differential Equation

In connection with this, first, in Tasković [3] we introduced the concept
of transversal (upper and lower) spaces as a natural extension of Fréchet’s
Kurepa’s and Menger’s spaces.

Let X be a nonempty set. The function ρ : X × X → R0
+ := [0,+∞)

is called an upper transverse on X (or upper transversal) iff: ρ[x, y] =
ρ[y, x], ρ[x, y] = 0 if and only if x = y, and if there is function ψ : (R0

+)2 →
R0

+ such that

(As) ρ[x, y] ≤ max
{
ρ[x, z], ρ[z, y], ψ

(
ρ[x, z], ρ[z, y]

)}
for all x, y, z ∈ X. An upper transversal space is a set X together with
a given upper transverse on X. The function ψ in (As) is called upper
bisection function.

On the other hand, the function ρ : X ×X → [0,+∞] := R0
+ ∪ {+∞} is

called a lower transverse on X (or lower transversal) iff: ρ[x, y] = ρ[y, x],
ρ[x, y] = +∞ if and only if x = y, and if there is a lower bisection function
d : [0,+∞]2 → [0,+∞] such that

(Am) ρ[x, y] ≥ min
{
ρ[x, z], ρ[z, y], d

(
ρ[x, z], ρ[z, y]

)}
for all x, y, z ∈ X. A lower transversal space is a set X together with
a given lower transverse on X. The function d in (Am) is called lower
bisection function.

In recent years a great number of papers have presented results in the
fixed point theory on miscellaneous spaces.

In this paper we begin with intensive development of the fixed point
theory on transversal spaces, special, with development on lower transversal
spaces.

Let (X, ρ) be a lower transversal space and T : X → X. We shall intro-
duce the concept of DS-convergence in a space X; i.e., a lower transversal
space X satisfies the condition of DS-convergence (or X is DS-complete)
iff: {xn}n∈N is an arbitrary sequence in X and

∑∞
i=1 ρ[xi, xi+1] = +∞ im-

plies that {xn}n∈N has a convergent subsequence in X.
In connection with this, a lower transversal space X satisfies the con-

dition of orbitally DS-convergence (or X is orbitally DS-complete) iff:
{Tnx}n∈N∪{0} for x ∈ X is an arbitrary iteration sequence in X and

∞∑
n=0

ρ[Tnx, Tn+1x] = +∞ (for x ∈ X)

implies that {Tnx}n∈N∪{0} has a convergent subsequence in X.
Annotation. We notice that in [9] Tasković proved the following state-

ment for a class of expansion mappings. Namely, if (X, ρ) is an orbitally
DS-complete lower transversal space, if T : X → X, and if there exists a
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number q > 1 such that

ρ
(
T (x), T (y)

)
≥ qρ(x, y)(1)

for each x, y ∈ X, then T has a unique fixed point in the lower transversal
space X.

Annotation. Let (X, ρX) and (Y, ρY ) be two lower transversal spaces
and let T : X → Y . We notice, from Tasković [9], that T be lower
transversal continuous (or lower continuous) at x0 ∈ X iff for every
ε > 0 there exists a δ > 0 such that the relation

ρX [x, x0] > δ implies ρY [T (x), T (x0)] > ε.

A typical first example of a lower transversal continuous mapping is the
mapping T : X → X with property (1). Also, the lower transverse ρ
need not be lower transversal continuous; but, for an arbitrary metric func-
tion r(x, y) the lower transverse of the form ρ[x, y] := 1/r(x, y) is a lower
transversal continuous function. For further facts on the lower transversal
continuous mappings see: Tasković [9].

In this sense, for any nonempty set S in the lower transversal space X
the diameter of S is defined by

diam(S) := inf
{
ρ[x, y] : x, y ∈ S

}
;

it is a positive real number or +∞, and A ⊂ B implies diam(B) ≤ diam(A).
The relation diam(S) = 0 holds if and only if S is a one point set.

Elements of a lower transversal space will usually be called points. Given
a lower transversal space (X, ρ), with the bisection funkction d and a point
z ∈ X, the open ball of center z and radius r > 0 is the set

d(B(z, r)) :=
{
x ∈ X : ρ[z, x] > r

}
.

In this sense, we have the following form of convergence on the lower
transversal spaces. The convergence xn → x as n→∞ in the lower transver-
sal space (X, ρ) means that

ρ[xn, x] → +∞ as n→∞,

or equivalently, for every ε > 0 there exists an integer n0 such that the
relation n ≥ n0 implies ρ[xn, x] > ε.

The sequence {xn}n∈N in the lower transversal space (X, ρ) is called tran-
sversal sequence (or lower Cauchy sequence) iff for every ε > 0 there is
an n0 = n0(ε) such that

ρ[xn, xm] > ε for all n,m ≥ n0.

Let (X, ρ) be a lower transversal space and T : X → X. We notice,
from Tasković [9], that a sequence of iterates {Tn(x)}n∈N in X is said to be
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transversal sequence if and only if

lim
n→∞

(
diam

{
T k(x) : k ≥ n

})
= +∞.

In this sense, a lower transversal space is called lower complete iff every
transversal sequence converges.

Also, a space (X, ρ) is said to be lower orbitally complete (or lower
T -orbitally complete) iff every transversal sequence which is contained in
the orbit O(x) := {x, Tx, T 2x, . . . } for some x ∈ X converges in X.

2. Fixed points on lower transversal spaces

We are now in a position to formulate our main statements (Geometric
statements of fixed point) in the following forms.

Theorem 1. Let T be a self-map on an orbitally DS-complete lower tran-
sversal space (X, ρ). Suppose that there exists a function G : X → R0

+ such
that

ρ
(
x, T (x)

)
≥ G(Tx)−G(x)(A)

for every x ∈ X. If x 7→ G(Tx) is an upper semicontinuous function and if
G(Tna) → +∞ as n→∞ for some a ∈ X, then T has a fixed point in X.

Proof. Let x ∈ X be an arbitrary point in X. We can show then that
the sequence of iterates {Tnx}n∈N∪{0} in X satisfies the condition of DS-
convergence. In this sense, from (A) we have

n∑
i=0

ρ[T ix, T i+1x] ≥ G(Tn+1x)−G(x),

and thus, from the conditions for functional G, as n → ∞, we obtain the
following fact:

∞∑
i=0

ρ[T ia, T i+1a] ≥ lim
n→∞

(
G(Tn+1a)−G(a)

)
= +∞.

Hence, for the subsequence of iterates {Tn(k)a}k∈N∪{0} in X, by orbitally
DS-completeness, there is ξ ∈ X such that Tn(k)a → ξ (k → ∞). Since
ξ ∈ X, from (A), we obtain the following inequality in the form

ρ(ξ, T (ξ)) ≥ G(Tξ)−G(ξ);

i.e., since x 7→ G(Tx) is an upper semicontinuous function, we have

ρ(ξ, T (ξ)) ≥ lim sup
k→∞

G(Tn(k)+1a)−G(ξ) = +∞;

which means, by the properties of a lower transversal space, Tξ = ξ. The
proof is complete.

In connection with the preceding statement, we now show that the fol-
lowing facts hold.



Milan R. Tasković 129

Let X be a topological space (or only a nonempty set), let T : X → X
and let A : X × X → R0

+ be a given mapping. We shall introduce the
concept of DA-variation in a space X, i.e., a topological space X satisfies
the condition of DA-variation iff: there exists a function A : X×X → R0

+

such that
∞∑

n=0

A(Tnx, Tn+1x) = +∞(2)

for arbitrary x ∈ X. In this case if (2) holds, we say and that T : X → X
is unbounded variation or unbounded A-variation.

Lemma 1. Let X be a nonempty set, T : X → X, and let A : X×X → R0
+

be a given mapping. Then the following facts are mutually equivalent:
(a) T is an unbounded variation mapping on a nonempty set X in the

sense of the mapping A.
(b) There is an unbounded function G : X → R0

+ such that holds the
following inequality in the form

A(Tnx, Tn+1x) ≥ G(Tx)−G(x)

for every n ∈ N ∪ {0} and for every x ∈ X, where G(Tnx) → +∞ as
n→∞.

(c) There is a nonnegative sequences of real functions in the form x 7→
Cn(x, Tx) such that the following inequality holds

A(Tnx, Tn+1x) ≥ Cn(x, Tx)

for every n ∈ N ∪ {0} and for every x ∈ X, where
∑∞

n=0Cn(x, Tx) = +∞
for arbitrary x ∈ X.

Proof. For the proof of this facts, first, suppose that holds (a), then we
define the function G : X → R0

+ by,

G(x) =
n∑

i=0

A(T ix, T i+1x) for x ∈ X;

and thus we have G(Tx) − G(x) ≤ A(Tnx, Tn+1x), i.e., the condition (b)
holds. If (b) holds, we obtain that holds and the following inequality

A(Tnx, Tn+1x) ≥ G(Tn+1x)−G(Tnx)

for every x ∈ X and for every n ∈ N∪{0}. We set Cn(x, Tx) = G(Tn+1x)−
G(Tnx) directly we obtain (c). Also, elementary, (a) is a consequence of
(c). The proof is complete.

Annotation. Let X be a topological space, let T : X → X, and let
A : X × X → R0

+ be a given mapping. We shall introduce the concept of
DS-convergence in a space X, i.e., a topological space X satisfies the con-
dition of DS-convergence iff: {xn}n∈N is an arbitrary sequence in X and
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i=1A(xi, xi+1) = +∞ implies that {xn}n∈N has a convergent subsequence

in X.
On the other hand, a topological space X satisfies the following condition

of orbitally DS-convergence iff: {Tnx}n∈N∪{0} for x ∈ X is an arbitrary
iteration sequence in X and

∑∞
n=0A(Tnx, Tn+1x) = +∞ (for x ∈ X) im-

plies that {Tnx}n∈N∪{0} has a convergent subsequence in X.
We are now in a position to formulate our main geometric statements of

fixed point on arbitrary topological spaces.
Theorem 1a. Let T be a self-map on a topological space X which is

with the property of orbitally DS-convergence. Suppose that there exists a
function G : X → R such that

A
(
x, T (x)

)
≥ G(Tx)−G(x)

for every x ∈ X. If x 7→ G(Tx) is an upper semicontinuous function and if
A(a, b) = +∞ iff a = b and if G(Tnz) → +∞ (n → ∞) for some z ∈ X,
then T has a fixed point in X.

The proof of this statement is a totally analogous with the proof of the
preceding Theorem 1.

In connection with the preceding, we shall introduce the concept of lower
topological space. In this sense, the function A : X × X → [0,+∞] is
called a lower transverse on a nonempty set X (or lower transversal) iff:
A(x, y) = +∞ if and only if x = y for all x, y ∈ X.

A lower topological space (X,A) is a topological space X together
with a given lower tranverse A on X.

Otherwise, the function A is called a semilower transverse on a non-
empty set X iff: A(x, y) = +∞ implies x = y for all x, y ∈ X. A semilower
topological space (X,A) is a topological space X together with a given
semilower transverse A on X.

We notice, in connection with the preceding, that Theorem 1a de facto
on lower topological spaces holds.

Theorem 1b. Let T be a self-map on a semilower topological space
(X,A) which is with the property of DS-convergence. Suppose that there
exists an unbounded upper semicontinuous function G : X → R0

+ such that

A(x, y) ≥ G(y)−G(x)(N)

for all x, y ∈ X. Then T has a fixed point in X.
Proof. From facts of this statement there exists a sequence {xn}n∈N in X

such that G(xn) → +∞ as n→∞. On the other hand, from (N), we have

∞∑
n=1

A(xn, xn+1) ≥
∞∑

n=1

(
G(xn+1)−G(xn)

)
= +∞,
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and thus, byDS-completeness, there is ζ ∈ X such that xn(k) → ζ (k →∞).
Since ζ ∈ X, from (N), we obtain the following inequality in the form

A
(
ζ, T (ζ)

)
≥ G(ζ)−G(Tζ);

i.e., since G is an upper semicontinuous function, we have the following
inequality and equality of the form

A
(
ζ, T (ζ)

)
≥ lim sup

k→∞
G
(
xn(k)

)
−G(Tζ) = +∞,

which means, by properties of a semilower topological space, T (ζ) = ζ. The
proof is complete.

For further results the following fact is essential. In this sense, we notice
that the preceding statement we can modify in the following sense. Namely,
the next statement follows from Theorem 1 as follows.

Theorem 1c Let T be a self-map on a DS-complete lower transversal
space (X, ρ). Suppose that there exists an unbounded above function G :
X → R0

+ ∪ {+∞} such that for any x ∈ X, with x 6= Tx, there exists
y ∈ X\{x} with property

ρ(x, y) ≥ G(y)−G(x),(Lc)

where x 7→ G(Tx) is an upper semicontinuous function, then T has a fixed
point in X. (For further applications this statement is essential!)

A brief suitable proof of this statement based on Zorn’s lemma may be
found in Tasković [9].

General annotation. For further facts, in connection with the preced-
ing problems of fixed point and transversal spaces, see: Tasković [2]–[9].

3. Convexity on lower transversal spaces

Let X be a linear space over K(:= R or C). The mapping x 7→ ‖x‖ :
X → R is called an upper transversal seminorm (or upper seminorm)
iff: ‖x‖ ≥ 0 for every x ∈ X, ‖λx‖ = |λ|‖x‖ for all λ ∈ K and x ∈ X, and
if there is a function ψ : (RR)2 → RR := [0,+∞) such that

‖x+ y‖ ≤ max
{
‖x‖, ‖y‖, ψ

(
‖x‖, ‖y‖

)}
(Nu)

for all x, y ∈ X.
Further, x 7→ ‖x‖ is called an upper transversal norm (or upper norm)

iff in addition: ‖x‖ = 0 if and only if x = 0.
An upper transversal normed space (X, ‖.‖) over K consists of a

linear space X over K together with an upper transversal norm x 7→ ‖x‖.
The function ψ : (RR)2 → RR in (Nu) is called upper bisection

function. From (Nu) it follows, by induction, that there is a function
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M : (RR)n → RR such that

‖x0 − xn‖ ≤

≤ max
{
‖x0 − x1‖, . . . , ‖xn−1 − xn‖,M

(
‖x0 − x1‖, . . . , ‖xn−1 − xn‖

)}
for all x0, x1, . . . , xn ∈ X and for any fixed integer n ≥ 2.

It is easy to verify that the upper transversal normed linear space X
is a transversal upper space (see: Tasković [6]) with respect to the upper
transverse ρ : X ×X → RR defined by

ρ[x, y] = ‖x− y‖ for all x, y ∈ X;

thus we obtain ρ[x − z, y − z] = ρ[x, y] and ρ[λx, λy] = |λ|ρ[x, y] for all
x, y, z ∈ X and for every scalar λ ∈ K.

In this sense, an upper transversal normed space X is said to be upper
complete if it is upper complete as a transversal upper space. The upper
convergence xn → x (n→∞) means ‖xn − x‖ → 0 (n→∞).

We will in further denote by B(R0
+) the set of all upper bisection functions

ψ : (R)2 → R which are increasing satisfying ψ(t, t) ≤ t for every t ∈ R.
In an former paper (Tasković: Math Japonica, 37 (1992), 367–372), have

introduced the notion of general convex functions. A function f : D → R,
where R denotes the real line and D is a convex subset of Rn, is said to be
general convex iff there is a function ψ : (f(D))2 → R such that

f(λx+ (1− λ)y) ≤ max
{
f(x), f(x), ψ

(
f(x), f(y)

)}
(Max)

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. We notice that the set of
all convex and quasiconvex functions can be a proper subset of the set all
general convex functions.

Let X be a linear space over K. The mapping x 7→ ‖x‖ : X → [0,+∞] is
called a lower transversal seminorm (or lower seminorm) iff: ‖x‖ ≥ 0 for
every x ∈ X, ‖λx‖ = |f(λ)|‖x‖ for all λ ∈ K and x ∈ X, where f : K → K,
and if there is a function d : [0,+∞]2 → [0,+∞] such that

‖x+ y‖ ≥ min
{
‖x‖, ‖y‖, d

(
‖x‖, ‖y‖

)}
(Nl)

for all x, y ∈ X.
Further, x 7→ ‖x‖ is called a lower transversal norm (or lower norm)

iff in addition: ‖x‖ = +∞ if and only if x = 0.
A lower transversal normed space (X, ‖·‖) over K consists of a linear

space X over K together with a lower transversal norm x 7→ ‖x‖.
The function d : [0,+∞]2 → [0,+∞] in (Nl) is called lower bisection

function. From (Nl) it follows, by induction, that there is a function D :
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[0,+∞]n → [0,+∞] such that

‖x0 − xn‖ ≥

≥ min
{
‖x0 − x1‖, . . . , ‖xn−1 − xn‖,D

(
‖x0 − x1‖, . . . , ‖xn−1 − xn‖

)}
for all x0, x1, . . . , xn ∈ X and for any fixed integer n ≥ 2.

It is easy to verify that the lower transversal normed linear space X
is a transversal lower space (see: Tasković [9]) with respect to the lower
transverse ρ : X ×X → [0,+∞] defined by

ρ[x, y] = ‖x− y‖ for all x, y ∈ X;

thus we obtain ρ[x − z, y − z] = ρ[x, y] and ρ[λx, λy] = |f(λ)|ρ[x, y] for all
x, y, z ∈ X and for every scalar λ ∈ K.

In this sense, the sequence {xn}n∈N in (X, ‖.‖) converges (or lower con-
verges) to x ∈ X if the sequence {xn}n∈N converges (or lower converges) in
(X, ρ), i.e., if

ρ[xn, x] = ‖xn − x‖ → +∞ as n→∞.

In this sense, a lower transversal normed space X is said to be lower
complete (or complete) if it is lower complete as a transversal lower space.

We will, in further, denote by D([0,+∞]) the set of all lower bisection
functions d : [0,+∞]2 → [0,+∞] which are increasing satisfying d(t, t) ≥ t
for every t ∈ [0,+∞].

A function f : D → R, where R denotes the ral line inD is a convex subset
of Rn, is said to be general concave iff there is a function d : (f(D))2 → R
such that

f(λx+ (1− λ)y) ≥ min
{
f(x), f(y), d

(
f(x), f(y)

)}
(Min)

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. For this see: Tasković [4].
We notice that lower transversal norm x 7→ ‖x‖ is a general concave

function. The proof is simple.
Lower bounded linear operators. Let X and Y be lower transversal

normed spaces over K. The linear operator A : X → Y is called lower
bounded (or bounded) iff

inf
x∈X\{0}

‖Ax‖
‖x‖

> 0;

and, thus, the set B(X,Y ) of lower bounded linear operators from X to Y
together with the operator lower norm of the form

‖A‖ := inf
x∈X\{0}

‖Ax‖
‖x‖

is a complete (lower complete) lower transversal normed space over K.
Let X and Y be lower transversal normed spaces, then a map f : M ⊂

X → Y is lower transversal continuous (or lower continuous) at x ∈M
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iff for every ε > 0 there is a δ = δ(ε) > 0 such that ‖f(x) − f(y)‖ > ε
whenever y ∈M and ‖x− y‖ > δ.

Lower relatively compactness. Let (X, ‖ · ‖) be a lower transversal
normed space. A set M in X is lower bounded iff there is a number r > 0
such that ‖x‖ ≥ r for all x ∈M .

A set M in X is lower relatively compact (resp. lower compact)
iff every sequence in M contains a lower convergent subsequence (resp. the
lower limit of which also belongs to M).

The set M is lower dense in X iff M = X, i.e., for every x ∈ X there
exists a sequence {xn}n∈N in M such that xn → x as n → ∞. This is
equivalent to the condition that for every x ∈ X and for every ε > 0 there
is a point y ∈M such that ‖x− y‖ > ε. The concept of denseness in lower
transversal normed spaces covers many new approximation results.

Let X and Y are lower transversal normed spaces, then a map f : M ⊂
X → Y is lower transversal continuous (or lower continuous) at x ∈M
iff xn → x as n→∞ implies f(xn) → f(x) as n→∞.

Here it naturally is assumed that all of the xn belong to M . That f is
lower transversal continuous at x then is equivalent to: for every ε > 0 there
is a δ(ε) > 0 such that

‖f(x)− f(y)‖ > ε whenever y ∈M and ‖x− y‖ > δ(ε).

Let G be a nonempty bounded open set in Rn. Then LC(G) denotes the
set of all real lower transversal continuous functions f : G → R. For the
special case where G is a bounded open interval (a, b) we write LC[a, b] for
LC(G). In this sense, the set M in LC(G) is lower relatively compact iff:

(i) (lower uniformly boundedness)

inf
f∈M

(
1

supx∈G |f(x)|

)
> 0;

(ii) (lower equicontinuity) for every ε > 0 there is a δ(ε) > 0 such that
the following fact holds that is(

sup
f∈M

|f(x)− f(y)

)−1

> ε whenever x, y ∈ G and |x− y|−1 > δ(ε);

where here δ(ε) is independent of x, y and f .
The space LC(G, Y ). Let G be a nonempty bounded open set in Rn and

let (Y, ‖ · ‖Y ) be a lower transversal normed space over K. We let LC(G, Y )
denote the set of all lower transversal continuous functions f : G → Y .
Then LC(G, Y ) becomes a lower transversal normed space over K with the
maximum norm of the form

‖f‖ = 1
/

max
x∈G

‖f(x)‖Y .



Milan R. Tasković 135

In this sense we have the following statement of a Form of the Arzelà-
Ascoli theorem for the lower transversal normed spaces: The set M in
LC(G, Y ) is lower relatively compact iff: the set {f(x) : f ∈ M} is lower
relatively compact in Y for all x ∈ G, and for every x ∈ G and every ε > 0
there is a δ(ε, x) > 0 which is independent of the function f such that

inf
f∈M

‖f(x)− f(y)‖Y > ε whenever y ∈ G and ‖x− y‖ > δ(ε, x).

A brief proof of this statement may be found in: Tasković [9]. This
statement is essential for further facts on lower transversal normed spaces.

Lower compact operators. Let X and Y be lower transversal normed
spaces and T : D(T ) ⊂ X → Y an operator. The operator T is called lower
compact iff: T is lower transversal continuous and T maps lower bounded
sets into lower relatively compact sets.

Typical example of lower compact operators on infinite dimensional lower
transversal normed spaces is integral operator in the following form:

(Tx)(t) =
∫ t

a
K(t, s, x(s)) d s for all t ∈ [a, b],

where K : [a, b]× [a, b]× [−r, r] → K(:= R,C) is a continuous function. Set

M :=
{
x ∈ LC

(
[a, b],K

)
: ‖x‖ ≥ r

}
,

where ‖x‖ = 1/maxa≤s≤b |x(s)| and LC
(
[a, b],K

)
is the space of all lower

transversal continuous maps x : [a, b] → K.
In this sense, we will consider T for K = R. The remaining case is

treated similarly. The set A = [a, b] × [a, b] × [−r, r] is compact, whence
K is bounded and uniformly continuous on A. Thus there is a number α
such that |K(t, s, x)| ≤ α for all (t, s, x) ∈ A, and for every ε > 0 there is
a δ(ε) > 0 such that |K(t1, s1, x1)−K(t2, s2, x2)| < ε for all (ti, si, xi) ∈ A
and i = 1, 2 satisfying |t1 − t2| + |s1 − s2| + |x1 − x2| < δ(ε). Let z = Tx
and x ∈M . Then

1
z(t)

≥ 1∣∣∣∫ t
a K

(
t, s, x(s)

)
d s
∣∣∣ ≥ 1

(b− a)α

for all t ∈ [a, b]. Furthermore, for |t1 − t2| ≤ min{δ(ε), ε}, we obtain the
following inequalities of the form

1
|z(t1)− z(t2)|

=
∣∣∣∣∫ t1

a
K
(
t1, s, x(s)

)
d s−

∫ t2

a
K
(
t2, s, x(s)

)
d s
∣∣∣∣−1

=

=
∣∣∣∣∫ t1

a

(
K
(
t1, s, x(s)

)
−K

(
t2, s, x(s)

))
d s−

∫ t2

t1

K
(
t2, s, x(s)

)
d s
∣∣∣∣−1

≥

≥ 1
(b− a)ε+ |t1 − t2|α

≥ 1
((b− a) + α)ε

;
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and thus, the preceding two inequalities are uniformly true for z = Tx with
arbitrary x ∈ M . By the Form of the Arzelà-Ascoli theorem (for lower
transversal spaces), the set T (M) is lower relatively compact.

On the other hand, the operator T is lower transversal continuous on
M . To see this, let {xn}n∈N be a sequence in M with ‖xn − x‖ → +∞ as
n → ∞, i.e., the functions xn(t) lower converge uniformly on [a, b] to x(t).
Set zn = T (xn) and z = T (x). Then

‖z − zn‖ =
1

maxa≤t≤b |z(t)− zn(t)|
=

=
(

max
a≤t≤b

∣∣∣∣∫ t

a

(
K
(
t, s, x(s)

)
−K

(
t, s, xn(s)

))
d s
∣∣∣∣)−1

→ +∞as n→∞;

and thus, all the preceding facts together imply the lower compactness of
T . The prove this fact is complete.

The set C in linear space is lower convex if for x, y ∈ C and λ ∈ [1, 2]
implies that λx+ (1− λ)y ∈ C. The lower transversal space (X, ρ) is called
lower convex (or transversal lower convex) if for any two different points
x, y ∈ X there is a point z ∈ X (z 6= x, y) such that

ρ[x, y] + ρ[y, z] =
9
2
ρ[x, z].(Cd)

In connection with this, if C ⊂ X is a lower convex set of transversal
lower normed space X, then C also and transversal lower convex space with
ρ[x, y] = 1/‖x−y‖, for the classical norm ‖ ·‖, because for any two different
points x, y ∈ C there is a point z := (3y−x)/2 ∈ C (z 6= x, y) such that (Cd)
holds. For further facts on lower transversal normed spaces see: Tasković
[9].

We are now in a position to formulate the following general statements
which are a based for geometry (lower convexity) of lower transversal spaces.
The following statements are very connection with the famous Schauder’s
problem (Scottish book, problem 54), from: Tasković [8].

Proposition 1. Let C be a nonempty lower convex compact subset of a
linear topological space X and suppose T : C → C is a lower transversal
continuous mapping. Then T has a fixed point in C.

A suitable proof of this statement may be found in Tasković [9]. Also,
a brief proof of this statement we can give and from the preceding facts of
this paper.

Proposition 2. Suppose that C is a nonempty lower convex lower compact
subset of Rn, and that T : C → C is a lower transversal continuous mapping.
Then T has a fixed point in C.

We can now formulate Proposition 2 in a manner valid for all transversal
lower normed linear space.
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Proposition 3. Let C be a nonempty, lower compact, lower convex subset
of a transversal lower normed space X, and suppose T : C → C is a lower
transversal continuous operator. Then T has a fixed point in C.

We notice that Propositions 2 and 3 are directly consequences of Propo-
sition 1. A brief suitable proof of Proposition 3 may be found in Tasković
[9].

On the other hand, in connection with the preceding facts, the set C in
linear space is convex if for x, y ∈ C and λ ∈ [0, 1] implies λx+(1−λ)y ∈ C.

The lower transversal space (X, ρ) is called D-convex (or transversal D-
convex) if for two different point, x, y ∈ X there is a point z ∈ X (z 6= x, y)
such that

ρ[x, y] + ρ[y, z] = ρ[x, z].(Dc)

In connection with this, if C ⊂ X is a convex set of a transversal lower
normed space X, then C also and transversal D-convex space with ρ[x, y] =
1/‖x− y‖, for the classical norm ‖ · ‖, because for any two different points
x, y ∈ C there is a point

z :=
3−

√
5

2
y +

√
5− 1
2

x ∈ C (z 6= x, y)

such that (Dc) holds. For futher facts see: Tasković [9].

Proposition 4. Let C be a nonempty convex compact subset of a linear
topological space X and suppose T : C → C is a lower transversal continuous
mapping. Then T has a fixed point in C.

A proof of this statement we can give from the preceding facts of this
paper. The proof of this statement is similary with the proof of the former
Proposition 1.

Proposition 5. Suppose that C is a nonempty D-convex lower compact
subset of Rn, and that T : C → C is a lower transversal continuous mapping.
Then T has a fixed point in C.

¿From Proposition 4 we can now formulate Proposition 5 in a manner
valid for all transversal lower normed spaces.

Proposition 6. Let C be a nonempty, lower compact, D-convex subset of
a transversal lower normed space X, and suppose T : C → C is a lower
transversal continuous operator. Then T has a fixed point in C.

We notice that Propositions 5 and 6 are directly consequences of Propo-
sition 4. A brief suitable proof of Proposition 6 may be found in Tasković
[9].

A direct equivalent translation of Propositions 3 and 6 to lower compact
operators is the following result.
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Proposition 7. Let C be a nonempty, closed, lower bounded, D-convex (or
lower convex) subset of a lower complete transversal lower normed space X,
and suppose T : C → C is a lower compact operator. Then T has a fixed
point in C.

A brief proof of this statement may be found in Tasković [9]. This form
of this statement is useful for applications.

Open problem. Does every lower continuous mapping of compact set
C ⊂ X into itself in linear topological space X has a fixed point in C, where
C with the property that: λx+(1−λ)y ∈ C for all x, y ∈ C and λ ∈ [n, n+1]
for an arbitrary fixed number n ∈ N!?

We notice that the cases n = 0 and n = 1, of this problem, are solve via
Propositions 1 and 4 of this paper.

Lemma 2. Let (X, ρ) be a lower transversal space. If C is a transversal
D-convex or lower transversal convex set and if T : C → C, then there
exists a function G : C → R0

+ ∪ {+∞} such that T with the property (Lc).

Proof. Let a ∈ C be a fixed element and let x ∈ C be an arbitrary point
with x 6= a. First, since C is a D-convex set in X, it follows from definition
that for a ∈ C and for all x ∈ C\{a} there exists a point y 6= a, x in C
such that ρ[a, x] + ρ[x, y] = ρ[a, y]. Hence, we have, also and the following
inequality of the form

3ρ[x, y] ≥ ρ[x, y] = ρ[a, y]− ρ[a, x],(3)

for every x ∈ C\{a}. On the other hand, if C is a transversal lower convex
set, then again holds (3) for every x ∈ C\{a}. We notice that (3) simply
holds and for x = a. Hence, from inequality (3) define function G : C →
RR ∪ {+∞} such that

G(x) = 3−1ρ[a, x] for x ∈ C.(4)

Then, clearly, from (3) and (4) we have for any x ∈ C that there exists
y 6= x in C such that ρ[x, y] ≥ G(y) − G(x). Thus for any x ∈ C with
x 6= Tx there exists y ∈ C\{x} such that (Lc). Hence, it follows that T is
with the property (Lc) and the proof is complete.

Lemma 3. Let X be a linear space. If C is a D-convex on lower convex
set in X and if T is a map of C into itself, then there exists a continuous
function G : C → RR ∪ {+∞} such that T is a with the property (Lc).

Proof. Consider the D-convex (or lower convex) set C of the linear space
X as a lower quasi-transversal space with the quasi lower transverse q, where
q : C × C → RR ∪ {+∞} defined by

q(x, y) =
{

+∞, for x = y,
min{K(x),K(y)}, for x 6= y,
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for a strictly convex continuous function K : C → RR ∪ {+∞}. Then it is
easy to see that q is a lower quasi-transverse, i.e., that for all x, y, z ∈ C we
have: q(x, y) = q(y, x), and

q(x, y) ≥ min
{
q(x, z), q(z, y), d

(
q(x, z), q(z, y)

)}
for some d :

(
RR ∪ {+∞}

)2
→ RR ∪ {+∞}, and that x = y implies

q(x, y) = +∞.
On the other hand, if q(x, y) = +∞ and x 6= y, i.e., if K(x) = K(y) =

+∞, then since K is a strictly convex function, we obtain the following fact

+∞ =
K(x) +K(y)

2
> K

(
x+ y

2

)
= +∞,

which is a contradiction. Consequently x = y = (x+ y)/2, i.e., x = y. Thus
q(x, y) = +∞ implies x = y, i.e., q is a continuous lower transverse on C.

Applying Lemma 2 to this case, we obtain then that there exists a con-
tinuous function G : C → RR ∪ {+∞} defined by G(x) = 3−1q(x, y) such
that T is with the property (Lc). The proof is complete.

Proof of Proposition 1. From Lemma 3 and the preceding facts there
exists a continuous function G : C → RR ∪ {+∞} such that T with the
property (Lc). Since T is a lower continuous mapping, the function x 7→
G(Tx) is an upper semicontinuous function. The set C is a compact in the
space X and thus C satisfies the condition of DS-completeness. It is easy
to see that T satisfies all the required hypotheses in Theorem 1c. Hence,
it follows from Theorem 1c, that T has a fixed point in C. The proof is
complete.

4. Application for Peano’s differential equation

Now we shall show how Proposition 3 and 6, i.e., Proposition 7, can be
applied for investigation of solvability of the initial value problem of the
form

x′(t) = f
(
t, x(t)

)
, x(t0) = y0,(De)

where f is merely continuous or lower transversal continuous. In this sense
the following result holds.

Theorem 2. Let there be given real numbers t0 and y0 and the following
rectangle of the form

Qb :=
{

(t, x) ∈ R2 : |t− t0| ≤ 1/a, |x− y0| ≤ 1/b
}
,

where a and b are fixed positive numbers. Suppose that f : Qb → R is
continuous or lower transversal continuous and bounded with

|f(t, x)| ≤ K for all (t, x) ∈ Qb,
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and fixed K > 0. For m = min{1/a, 1/bK} then the initial value prob-
lem (De) has a lower transversal continuously differentiable solution on the
closed interval of the form [t0 −m, t0 +m] := I.

In further let LC[t0−m, t0 +m] denote the space of all lower transversal
continuous functions x(t) where the lower norm ‖ · ‖ in the form

‖x‖ =
1

maxt∈I |x(t)|
.

Proof of Theorem 2. For the proof of this statement we first replace
(De) by the integral equation in the form

x(t) = y0 +
∫ t

t0

f
(
s, x(s)

)
d s,

and next write this as the operator equation x = Tx for x ∈M ⊂ X, where
M = {x ∈ X : ‖x− y0‖ ≥ b}.

The set M is closed, lower bounded, and D-convex of transversal lower
normed space X := LC[t0 −m, t0 +m]. We notice that T (M) ⊂M , i.e., T
mapsM intoM . For if x ∈M , then ‖x−y0‖ ≥ b, and hence |x(t)−y0| ≤ 1/b
for all t ∈ I. Thus,

‖Tx− y0‖ =
1

maxt∈I

∣∣∣∫ t
t0
f
(
s, x(s)

)
d s
∣∣∣ ≥ 1

mK
≥ b;

therefore, Tx ∈ M . The operator T : M → M is lower compact by the
preceding typical example. Now, Proposition 7 implies the existence of a
solution x = Tx, x ∈M . The proof is complete.

In this part, also, our goal is to generalize the preceding Form of Peano’s
theorem to equations of the form

x′(t) = f
(
t, x(t)

)
, x(t0) = y0,(5)

where x(t) lies in a lower transversal normed space Y . In the special case
where Y = Rp, (5) is the system

ξ′i(t) = fi

(
t, x(t)

)
, ξi(t0) = ηi0, i = 1, . . . , n;

where x(t) = (ξ1(t), . . . , ξn(t)), of n ordinary differential equations. For
continuous fi we obtain the equivalent system of integral equations

ξi(t) = ηi0 +
∫ t

t0

fi

(
s, x(s)

)
d s, i = 1, . . . , n.

As our lower transversal normed space we choose the set of all x(t) for
which the components ξi(t) are lower continuous on [t0 −m, t0 + m]. For
the lower norm on Y we use

‖x‖Y :=
1

max1≤i≤n

(
maxa≤t≤b |ξi(t)|

) ,
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then, in complete analogy with Theorem 2 one shows the existence of solu-
tions for some m and for continuous fi in the class of all lower continuous
functions.

In contrast to former fact that f is continuous, or lower transversal con-
tinuous, we now require f to be a lower compact mapping.

Theorem 3 (Generalized Theorem 2). Let Y be a lower complete lower
transversal normed space with a bisection function d ∈ D([0,+∞]), let t0 ∈
R and y0 ∈ Y , and

Qb :=
{

(t, y) ∈ R× Y : |t− t0| ≤ 1/a, ‖y − y0‖Y ≤ 1/b
}
,

for fixed numbers 0 < a, b <∞. Suppose that f : Qb → Y is a lower compact
map and that ‖f(t, y)‖Y ≤ K for all (t, y) ∈ Qb with fixed K > 0. If we
set m = min{1/a, 1/bK}, then (5) has a lower continuously differentiable
solution on [t0 −m, t0 +m] := I.

Proof. We set X := LC
(
[t0 −m, t0 +m], Y

)
for 0 < m < +∞, i.e., X is

the space of all lower continuous functions x : [t0 −m, t0 +m] → Y , where
as a lower norm, we choose

‖x‖X := max
t∈[t0−m,t0+m]

‖x(t)‖Y ,

where ‖x‖Y := (maxt∈I |x(t)|)−1 and, where M :=
{
x ∈ X : ‖x−y0‖X ≥ b

}
is a ball (lower) in X. Define z(t) to be the right side of the integral equation

x(t) = y0 +
∫ t

t0

f
(
s, x(s)

)
d s := z(t),(6)

and set T (x) = z. Then, this equation corresponds to the fixed point
problem x = T (x) for x ∈ M ⊂ X, and is also equivalent to (5). Since
‖x− y0‖X ≥ b and ‖z − y0‖X ≥ 1/mK ≥ b and

‖z(t1)− z(t2)‖Y ≥ 1
K|t1 − t2|

(7)

for all t1, t2 ∈ [t0 −m, t0 +m]; if we now set

A(t) := y0 + (t− t0)conv
{
f(s, x(s)) : s ∈ [t0 −m, t0 +m]

}
,

where conv denote closed convex hull, then z(t) ∈ A(t) and T (M) ⊂M .
The set T (M) is lower relatively compact in X, because for (7) shows that

the functions z ∈ T (M) are lower uniformly continuous functions, and for
all t ∈ [t0−m, t0 +m], their values lie in the lower compact set A(t). Then,
the Form of Arzelà-Ascoli theorem implies that T (M) is lower relatively
compact.
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On the other hand, the operator T is lower continuous on M . To see this,
let xn → x in X as n→∞. By (6), we have

‖Txn − Tx‖X ≥ m inf
s∈[t0−m,t0+m]

∥∥∥f(s, xn(s)
)
− f

(
s, x(s)

)∥∥∥
Y
→ +∞

as n → ∞. For if it did not, there would be an ε0 > 0 and a sequence,
denoted for brevity by (sn) in [t0 −m, t0 +m] for which∥∥∥f(sn, xn(sn)

)
− f

(
sn, x(sn)

)∥∥∥
Y
≤ ε0;(8)

then there is a subsequence, again denoted by (sn) and an s0 such that
sn → s0 as n→∞, and∥∥∥xn(sn)− x(s0)

∥∥∥
Y
≥ min

{∥∥∥xn(sn)− x(sn)
∥∥∥

Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y
,

d
(∥∥∥xn(sn)− x(sn)

∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y

)}
≥

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

≥ min
{∥∥∥xn(sn)− x(sn)

∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y
,

min
{∥∥∥xn(sn)− x(sn)

∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y

}}
=

= min
{∥∥∥xn(sn)− x(sn)

∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y

}
→ +∞ as n→∞.

In this sense, we note that {xn(s)}n∈N is lower uniformly convergent, x(t)
is lower continuous, and f is lower continuous, therefore both f(sn, xn(sn))
and f(sn, x(sn)) lower converge to f(s0, x(s0)) as n→∞, contradicting (8).

Apply the Proposition 7 to obtain the existence of a fixed point of T on
M . The proof is complete.

Aannotation. The preceding facts on lower compact operators can play
a central role in nonlinear functional analysis. Their importance stems from
the fact that many results on lower continuous operators on Rn carry over
to transversal lower normed spaces when “lower continuous” is replaced by
“lower compact”.

In connection with this, as well-known, compact and completely continu-
ous operators occur is many problems of classical analysis. In the nonlinear
case, the first comprehensive research on compact operators with numerous
applications to partial differential equations (both linear and nonlinear) was
due to J. Schauder: Zur Theorie stetiger Abbildungen in Funktionalräumen,
Math. Zeit., 26 (1927), 47–65.

Literature on applications of the Schauder theorem to nonlinear problems
is extensive. The first topological proof of the Peano theorem is due to G.
D. Birkhoff and O. D. Kellogg: Invariant points in function space, Trans.
AMS, 23 (1922), 95–115.

Juliusz Schauder in 1930 brief: “The problem which this work brings to
a certain conclusion was first investigated by Messrs. Birkhoff and Kellogg
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in 1922. These authors already recognized the correctness of the fixed point
theorem in simplest function spaces, but for each individual function spaces,
the proof had to be carried anew from the beginning”.

We notice that the fundamental idea of applying fixed point results to
produce theorems in analysis is due to H. Poincaré: Sur certaines solutions
particulières du problème des trois corps, Bull. Astronom., 1 (1884), 65–74.
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